ELSEVIER

Syntheses and structures of di- and trinuclear heterometallic complexes with nitrido bridges between rhenium and titanium

Edwin Gauch, Holger Hoppe, Joachim Strähle *
Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany

Received 29 May 1999; accepted 16 August 1999
Dedicated to Professor Fausto Calderazzo on the occasion of his 70th birthday.

Abstract

$\left[\mathrm{TiCl}_{4}(\mathrm{MeCN})\right]_{2}(\mathbf{1})$ is obtained from a gas phase reaction of TiCl_{4} and MeCN . It crystallizes in the orthorhombic space group Cmca with the cell constants $a=961.8(2), b=984.0(5), c=1637.0(4) \mathrm{pm}$, and $Z=4$. The symmetry of the dinuclear complex is $C_{2 h}$. The Ti atoms are connected with symmetrical chloro bridges, and the octahedral coordination is completed by one acetonitrile ligand coordinated to each Ti atom. $\left[\mathrm{TiCl}_{4}(\mathrm{MeCN})\right]_{2}$ reacts with $\mathrm{ReNCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to form the dinuclear complex $\left(\mathrm{Me}_{2} \mathrm{PhP}_{3}(\mathrm{MeCN}) \mathrm{ClRe}=\mathrm{N}-\mathrm{TiCl}_{5}\right.$ (2). It crystallizes as $2 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the monoclinic space group $P 2_{1} / n$ with the cell constants $a=982.0(2), b=1245.3(2), c=3088.1(5) \mathrm{pm}, \beta=92.44(2)^{\circ}$, and $Z=4$. The linear nitrido bridge ($\mathrm{Re}-\mathrm{N}-\mathrm{Ti}=167.7(4)^{\circ}$) is characterized by distances $\mathrm{Re}-\mathrm{N}=167.6(8) \mathrm{pm}$ and $\mathrm{Ti}-\mathrm{N}=223.9(9) \mathrm{pm}$. By using a fourfold excess of $\mathrm{ReNCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ in toluene, the trinuclear complex $\left[\left(\mathrm{Me}_{2} \mathrm{PhP}_{3} \mathrm{Cl}_{2} \mathrm{ReN}_{2} \mathrm{TiCl}_{4}(3)\right.\right.$ is obtained in form of crystals $3 \cdot 2$ toluene: $P \overline{1}, a=1070.4(2)$, $b=1283.2(5), c=1300.0(3) \mathrm{pm}, \alpha=85.21(2)^{\circ}, \beta=80.57(2)^{\circ}, \gamma=86.19(3)^{\circ}, Z=1$. The centrosymmetric complex 3 contains a linear axis Re=N-Ti-N $=$ Re with a Re-N distance of $168.5(9) \mathrm{pm}$ and a Ti-N distance of $215.7(9) \mathrm{pm}$. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Nitrido bridges between rhenium and titanium; Synthesis; Crystal structure

1. Introduction

Nitrido complexes with a terminal nitrido ligand show Lewis basic behavior and can thus form nitrido bridges to Lewis acidic species. The rhenium (V) complex $\mathrm{ReNCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}[1,2]$ was found to be of high basicity. Concerning this complex, three different reaction types with Lewis acids are observed. First, the Lewis acids bind to the terminal nitrido ligand, thus forming a nitrido bridge [3-7]. Second, the use of strong Lewis acids causes a separation of ligands of the rhenium complex. The resulting undercoordinated fragments recombine to a multinuclear rhenium complex with the nitrido bridges $\mathrm{Re}=\mathrm{N}-\operatorname{Re}$ [8]. If the reaction is carried out in a chlorinated solvent like CHCl_{3} or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the solvent is involved in the reaction. HCl is formed protonating the nitrido ligand, and the Cl^{-} anion coordinates to the Lewis acid [9].

[^0]We report on our attempts to synthesize complexes with a nitrido bridge between Re and Ti by the reaction of $\mathrm{ReNCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ with TiCl_{4}. In this case, TiCl_{4} acts as a strong Lewis acid, and the formation of a nitrido bridge has not been observed so far. We therefore tried to weaken the acidity of TiCl_{4} by adding MeCN . The resulting $\left[\mathrm{TiCl}_{4}(\mathrm{MeCN})\right]_{2}$ (1) afforded the new complexes $\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{3}(\mathrm{MeCN}) \mathrm{ClReNTiCl}_{5} \quad$ (2) and $\left[\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{3} \mathrm{Cl}_{2} \mathrm{ReN}_{2} \mathrm{TiCl}_{4}\right.$ (3) with the nitrido bridges $\mathrm{Re}=\mathrm{N}-\mathrm{Ti}$.

2. Results and discussion

2.1. Syntheses and properties of $\left[\mathrm{TiCl}_{4}(\mathrm{MeCN})\right]_{2}(\mathbf{1})$, $\left(\mathrm{Me}_{2} \mathrm{PhP}_{3}\right)_{3}\left(\mathrm{MeCN}^{2} \mathrm{ClReNTiCl}_{5}\right.$ (2) and $\left[\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{3} \mathrm{Cl}_{2} \mathrm{ReN}_{2} \mathrm{TiCl}_{4}\right.$ (3)

The mononuclear complex $\mathrm{TiCl}_{4} \cdot 2 \mathrm{MeCN}$ has long been known $[10,11]$. It is formed by the reaction of
TiCl_{4} with an excess of MeCN in the liquid phase. We obtained the new dinuclear complex $\left[\mathrm{TiCl}_{4}(\mathrm{MeCN})\right]_{2}$ (1) by a reaction of TiCl_{4} with MeCN in the gas phase in form of very moisture sensitive, yellow needles. $\left[\mathrm{TiCl}_{4}(\mathrm{MeCN})\right]_{2}$ reacts with $\mathrm{ReNCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ in dichloromethane to give the dinuclear complex $\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{3}(\mathrm{MeCN}) \mathrm{ClRe}=\mathrm{N}-\mathrm{TiCl}_{5}$ (2), which crystallizes as $2 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the form of air sensitive, red violets needles. When a fourfold excess of the rhenium nitrido complex was used in toluene, the centrosymmetrical trinuclear complex $\left[\left(\mathrm{Me}_{2} \mathrm{PhP}_{3}\right)_{3} \mathrm{Cl}_{2} \mathrm{Re}=\mathrm{N}_{2} \mathrm{TiCl}_{4}\right.$ (3) resulted. It forms triclinic brown needles with the composition 3.2 toluene, which decompose in air within a short time.

The valence vibration $v(\mathrm{ReN})=1061 \mathrm{~cm}^{-1}$ of the educt $\mathrm{ReNCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}[1]$ is only slightly shifted to lower wave numbers of $1041 \mathrm{~cm}^{-1}$ for 2 and 1018 cm^{-1} for 3 by coordinating TiCl_{5}^{-}or TiCl_{4} to the terminal nitrido ligand.

In the mass spectra of $\mathbf{2}$ and $\mathbf{3}$ only fragments of the rhenium complex are observed showing that the Ti-N bond is easily cleft.

The complexes $\mathbf{2}$ and $\mathbf{3}$ are diamagnetic with $\chi_{\mathrm{Mol}}=$ $-2.04 \times 10^{-4} \mathrm{emu} \mathrm{mol}^{-1}$ for 2 and $\chi_{\mathrm{Mol}}=-7.74 \times$ $10^{-4} \mathrm{emu} \mathrm{mol}{ }^{-1}$ for 3 at room temperature. Thus, the two d-electrons of $\operatorname{Re}(\mathrm{V})$ are paired as in the educt $\mathrm{ReNCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$.

2.2. Crystal structures of $\left[\mathrm{TiCl}_{4}(\mathrm{MeCN})\right]_{2}$ (1), $\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{3}\left(\mathrm{MeCN}^{2} \mathrm{ClReNTiCl}_{5}\right.$ (2) and $\left[\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{3} \mathrm{Cl}_{2} \mathrm{ReN}_{2} \mathrm{TiCl}_{4}\right.$ (3)

$\left[\mathrm{TiCl}_{4}(\mathrm{MeCN})\right]_{2}$ forms orthorhombic crystals in the space group Cmca (Table 1). The dinuclear complex has the crystallographic symmetry $C_{2 h}$. The two Ti atoms are connected by two symmetrical chloro bridges, and the octahedral coordination is completed by an acetonitrile ligand coordinated to each Ti atom (Fig. 1). The distances from the Ti atom to the terminal chloro ligands are 221 pm and correspond to covalent single bonds. The distances to the bridging Cl atoms of 248 pm are slightly longer due to their bridging function. For the distance of $\mathrm{Ti}-\mathrm{N}=219 \mathrm{pm}$, a coordinative single bond can be assumed.

Table 1
Crystal data and structure refinement for $\mathbf{1 , 2}$ and $\mathbf{3}$

	1	2. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	3.2 $\mathrm{C}_{7} \mathrm{H}_{8}$
Molecular formula	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{Cl}_{8} \mathrm{~N}_{2} \mathrm{Ti}_{2}$	$\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{Cl}_{8} \mathrm{~N}_{2} \mathrm{P}_{3} \mathrm{ReTi}$	$\mathrm{C}_{62} \mathrm{H}_{82} \mathrm{Cl}_{8} \mathrm{~N}_{2} \mathrm{P}_{6} \mathrm{Re}_{2} \mathrm{Ti}$
Formula weight	461.51	1001.20	1745.02
Crystal system	Orthorhombic	Monoclinic	Triclinic
Space group	Cmса	$P 2_{1 /} / n$	$P \overline{1}$
$a(\mathrm{pm})$	959.8(2)	982.0(2)	1070.4(2)
b (pm)	982.2(2)	1245.3(2)	1283.2(5)
$c(\mathrm{pm})$	1637.5(2)	3088.1(5)	1300.0(3)
$\alpha\left({ }^{\circ}\right)$	90	90	85.21(2)
$\beta\left({ }^{\circ}\right)$	90	92.44(2)	80.57(2)
$\gamma\left({ }^{\circ}\right)$	90	90	86.19(3)
$V\left(\mathrm{~nm}^{3}\right)$	1.5437(5)	3.773(1)	1.753(1)
Z	4	4	1
Temperature (K)	293(2)	293(2)	208(2)
$D_{\text {calc. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.986	1.762	1.653
Absorption coefficient (mm^{-1})	2.392	4.133	4.036
$F(000)$	896	1968	866
Color, habit	Yellow block	Violet needle	Brown needle
Crystal size (mm)	$0.25 \times 0.25 \times 0.10$	$0.25 \times 0.15 \times 0.10$	$0.20 \times 0.10 \times 0.05$
Theta range for data collection $\left({ }^{\circ}\right)$, method	3.22-30.97 ω-scans	3.11-26.97 ω-scans	3.12-27.00 ω-scans
Index ranges	$\begin{aligned} & -13 \leq h \leq 11, \quad-14 \leq k \leq 11, \\ & -23 \leq l \leq 23 \end{aligned}$	$\begin{aligned} & -12 \leq h \leq 12,0 \leq k \leq 15, \\ & -1 \leq l \leq 39 \end{aligned}$	$\begin{aligned} & -13 \leq h \leq 13, \quad-16 \leq k \leq 16, \\ & -1 \leq l \leq 16 \end{aligned}$
Reflections collected	6412	8661	8675
Independent reflections	1292 [$\left.R_{\text {int }}=0.0754\right]$	$8205\left[R_{\text {int }}=0.0721\right.$	$7650\left[R_{\text {int }}=0.060\right]$
Reflections with $I>2 \sigma(I)$	1090	4330	5320
Absorption correction	ψ-scans	ψ-scans	ψ-scans
Max/min transmission	0.9339/0.8694	0.9667/0.9345	0.9534/0.6338
Refined parameters	52	379	367
Goodness-of-fit on F^{2}	1.064	0.974	1.013
Weighting scheme	$\begin{aligned} & w 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1000 \mathrm{P})^{2}\right] \\ & P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0406 P)^{2}\right] \\ & P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0822 \mathrm{P})^{2}\right] \\ & P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
Final R indices [$I>2 \sigma(I)]$	$R_{1}=0.0467, w R_{2}=0.1317$	$R_{1}=0.0567, w R_{2}=0.0945$	$R_{1}=0.0657, w R_{2}=0.1404$
R indices (all data)	$R_{1}=0.0572, w R_{2}=0.1388$	$R_{1}=0.1491, w R_{2}=0.1164$	$R_{1}=0.1230, w R_{2}=0.1614$
Depository number	CCDC 126011	CCDC 126012	CCDC 126013

Fig. 1. Structure of $\mathbf{1}$, showing the atom numbering scheme [20]. Selected bond lengths (pm) and angles (${ }^{\circ}$: $\mathrm{Ti}-\mathrm{Cl}(1)=248.32(8)$; $\mathrm{Ti}-\mathrm{Cl}(2)=220.96(9) ; \quad \mathrm{Ti}-\mathrm{Cl}(3)=220.9(1) ; \quad \mathrm{Ti}-\mathrm{N}=218.9$ (3); $\mathrm{Ti}-\mathrm{Cl}(1)-\mathrm{Ti}^{\prime}=100.81(4)$.

In the dinuclear complex 2 (Fig. 2) the anion $\left[\mathrm{TiCl}_{5}\right]^{-}$ is coordinated to the nitrido ligand of the cationic $\mathrm{Re}(\mathrm{V})$ complex $\left[\mathrm{ReNCl}(\mathrm{MeCN})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+}$to form a linear nitrido bridge $\mathrm{Re}=\mathrm{N}-\mathrm{Ti}\left(\mathrm{Re}-\mathrm{N}-\mathrm{Ti}=167.7(4)^{\circ}\right.$, $\mathrm{Re}-\mathrm{N}=167.6(8) \mathrm{pm}$ and $\mathrm{Ti}-\mathrm{N}=223.9(9) \mathrm{pm}$). The $\mathrm{Re}-\mathrm{N}$ distance lies within the range of triple bonds [12,13], and is only marginally longer than the $\mathrm{Re}-\mathrm{N}$ distance in the educt $\operatorname{ReNCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(166 \mathrm{pm}[14])$. The Ti-N distance is, however, considerably longer than expected for a covalent single bond (207 pm [15]). It is also longer than the distances of 219 pm in $\mathbf{1}$ and

Fig. 2. Structure of 2, showing the atom numbering scheme [20]. The dichloromethane solvent molecule has been omitted for clarity. Selected bond lengths (pm) and angles $\left({ }^{\circ}\right)$: $\operatorname{Re}-\mathrm{N}(1)=167.6(8)$; $\operatorname{Re}-\mathrm{N}(2)=211.2(8) ; \quad \operatorname{Re}-\mathrm{Cl}(6)=248.8(3) ; \quad \operatorname{Re}-\mathrm{P}(1)=244.7(2)$; $\operatorname{Re}-\mathrm{P}(2)=249.7(3) ; \quad \operatorname{Re}-\mathrm{P}(3)=247.7(3) ; \quad \mathrm{Ti}-\mathrm{N}(1)=223.9(9)$; $\mathrm{Ti}-\mathrm{Cl}(1)=231.8(3) ; \quad \mathrm{Ti}-\mathrm{Cl}(2)=230.0(3) ; \quad \mathrm{Ti}-\mathrm{Cl}(3)=227.9(3)$; $\mathrm{Ti}-\mathrm{Cl}(4)=229.3(3) ; \mathrm{Ti}-\mathrm{Cl}(5)=231.6(4) ; \mathrm{Re}-\mathrm{N}(1)-\mathrm{Ti}=167.7(4)$.

Fig. 3. Structure of 3, showing the atom numbering scheme [20]. The toluene solvent molecules have been omitted for clarity. Selected bond lengths (pm) and angles $\left({ }^{\circ}\right): \operatorname{Re}-\mathrm{N}(1)=168.5(9) ; \operatorname{Re}-\mathrm{Cl}(1)=$ 248.5(3); $\quad \operatorname{Re}-\mathrm{Cl}(2)=243.1(3) ; \quad \operatorname{Re}-\mathrm{P}(1)=248.3(3) ; \quad \operatorname{Re}-\mathrm{P}(2)=$ $243.5(3) ; \operatorname{Re}-\mathrm{P}(3)=249.3(3) ; \mathrm{Ti}-\mathrm{N}(1)=215.7(9) ; \mathrm{Ti}-\mathrm{Cl}(3)=228.9(3)$; $\mathrm{Ti}-\mathrm{Cl}(4)=228.7(3) ; \mathrm{Re}-\mathrm{N}(1)-\mathrm{Ti}=175.4(5)$.

216 pm in 3. In agreement to the weak $\mathrm{Ti}-\mathrm{N}$ bond in 2, the distance $\mathrm{Ti}-\mathrm{Cl}(3)$ of 228 pm in trans position is shorter than the distances in the cis positions, which range from 229 to 232 pm .
It is interesting that despite the trans effect of the nitrido ligand, the cis Cl atom of the educt $\mathrm{ReNCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ is substituted by an acetonitrile molecule, and is then bound to the Ti atom. The reason for this phenomenon is that, after the coordination of the Ti atom to the nitrido ligand, the closer Cl atom in cis position is probably substituted more easily. In addition, the trans effect is weakened by the coordination of a Lewis acid. This weakening of the trans effect is also confirmed by the reduction of the $\mathrm{Re}-\mathrm{Cl}$ (trans) distance from 263.3(2) pm in the educt [14] to 248.8(3) pm in 2. It has almost the same value as $\mathrm{Re}-\mathrm{Cl}($ cis $)=$ 244.2(2) pm in $\mathrm{ReNCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$.

The trinuclear nitrido complex 3 crystallizes in the triclinic space group $P \overline{1}$ with one centrosymmetrical complex and two toluene molecules in the unit cell. It is isotypic to the recently found compound $\left[\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{3^{-}}\right.$ $\left.\mathrm{Cl}_{2} \mathrm{ReN}\right] 2 \mathrm{NbCl}_{4} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ [16]. Other comparable three nuclear complexes are $\left[\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{3} \mathrm{Cl}_{2} \mathrm{ReN}_{2} \mathrm{VOCl}_{2}\right.$ [9] and $\left[\left\{\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{3}(\mathrm{EtCN}) \mathrm{ClReN}\right\}_{2} \mathrm{MoCl}_{4}\right]^{2+}[7]$. In the latter case, the cis chloro ligand of the educt $\mathrm{ReNCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ is also substituted by a nitrile molecule as in 2.
The trinuclear complex $\mathbf{3}$ is centrosymmetrical with the Ti atom occupying the center of symmetry. Unlike in 2 , the coordination geometry of the two rhenium complex fragments remains unchanged in comparison to the structure of the educt complex $\mathrm{ReNCl}_{2}\left(\mathrm{PMe}_{2}-\right.$ $\mathrm{Ph})_{3}$. By coordinating the nitrido ligands to the central, square-planar moiety TiCl_{4}, a linear skeleton $\mathrm{Cl}-\mathrm{Re}=\mathrm{N}-\mathrm{Ti}-\mathrm{N} \equiv \mathrm{Re}-\mathrm{Cl}$ is formed (Fig. 3).

The Re-N distances of $168.5(9) \mathrm{pm}$ agree with the observation in $\mathbf{2}$, and they are only slightly longer than in $\mathrm{ReNCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ [14]. The Ti-N distances are considerably shorter than in $\mathbf{2}$. A comparison of the $\mathrm{Re}-\mathrm{Cl}$ distances of 243.1(3) and 248.5(3) pm in cis and trans position to the nitrido ligand shows that its trans influence is almost negligible, as it is usually found when a Lewis acid is coordinated to the nitrido ligand.

As it is expected, the different lengths of the $\mathrm{Re}-\mathrm{P}$ distances in $\mathbf{2}$ as well as in $\mathbf{3}$ show that the phosphine ligands cause a slightly stronger trans influence than the acetonitrile or chloro ligands.

3. Experimental

3.1. General techniques

All syntheses were carried out under dry nitrogen with dehydrated solvents. $\mathrm{ReNCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ was synthesized as described in [2]. TiCl_{4} was distilled before use.

3.2. $\left[\mathrm{TiCl}_{4}(\mathrm{MeCN})\right]_{2}$

The reaction of gas mixtures of $11 \% \mathrm{TiCl}_{4}$ and 11% MeCN in dry argon at $65^{\circ} \mathrm{C}$ results quantitatively in yellow needlelike crystals of $\left[\mathrm{TiCl}_{4}(\mathrm{MeCN})\right]_{2}$. When the product is sublimated at $65^{\circ} \mathrm{C}$ and 1 atm . of argon, yellow blocks suitable for the X-ray experiments can be obtained.

Anal. Found: C, $12.40 ; \mathrm{H}, 1.35 ; \mathrm{N}, 7.24 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NCl}_{4} \mathrm{Ti}$. Anal. Calc.: C, 10.40; H, 1.31; N, 6.06\%.

IR (KBr): $\mathrm{cm}^{-1} 2926 \mathrm{w}\left(\mathrm{CH}_{3}\right), 2311$ vs ($\mathrm{C} \equiv \mathrm{N}$), 2282 vs $(\mathrm{C} \equiv \mathrm{N}), 1402 \mathrm{w}\left(\mathrm{CH}_{3}\right), 1357 \mathrm{~m}\left(\mathrm{CH}_{3}\right), 942 \mathrm{~s}(\mathrm{C}-\mathrm{C})$, 381 vs (TiCl). MS (EI 20 eV): m/z (\%) 345 (5) $\left(\mathrm{Ti}_{2} \mathrm{Cl}_{4} 7\right.$), $190(50)\left(\mathrm{TiCl}_{4}\right), 153(70)\left(\mathrm{TiCl}_{3}\right), 118(15)\left(\mathrm{TiCl}_{2}\right), 83$ (25) (TiCl), 48 (15) (Ti), 41 (100) (MeCN).

3.3. $\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{3}(\mathrm{MeCN}) \mathrm{ClReNTiCl}_{5}$

$\left[\mathrm{TiCl}_{4}(\mathrm{MeCN})\right]_{2}(0.1 \mathrm{~g}, 0.216 \mathrm{mmol})$ is dissolved in 15 $\mathrm{ml} \mathrm{CH} \mathrm{Cl}_{2} . \mathrm{ReNCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(0.3 \mathrm{~g}, 0.438 \mathrm{mmol})$ is slowly added to this solution. The initial yellow solution changes to deep red. It is stirred at room temperature for one more hour. Under reduced pressure, the solution is concentrated to 50% of its original volume and covered with a layer of $25 \mathrm{ml} n$-hexane. Within 24 h , red violet needles of $\mathbf{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ are obtained (0.4 $\mathrm{g}=91 \%)$.

Anal. Found: C, 33.7; H, 3.3; N, 1.9; Cl, 26.44 $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{Cl}_{8} \mathrm{~N}_{2} \mathrm{P}_{3}$ ReTi. Anal. Calc.: C, 32.36; H 3.80; N, 2.80 , $\mathrm{Cl}, 28.37 \%$.

IR(KBr): $\mathrm{cm}^{-1} 2919 \mathrm{w}, 2327 \mathrm{w}, 2299 \mathrm{w}, 1482 \mathrm{w}$, $1436 \mathrm{~s}, 1287 \mathrm{w}, 1105 \mathrm{~m}, 1041 \mathrm{vs}, 945 \mathrm{~s}, 915 \mathrm{vs}, 749 \mathrm{~s}$, $713 \mathrm{~m}, 694 \mathrm{~m}, 491 \mathrm{~s}, 423 \mathrm{w}, 350 \mathrm{vs}, 289 \mathrm{w}$. MS (FAB^{+}):
$m / z \quad(\%) 650 \quad$ (40) (($\left.\left.\mathrm{Me}_{2} \mathrm{PhP}\right)_{3} \mathrm{ReNCl}\right), 547$ (80) (($\left.\mathrm{Me}_{2} \mathrm{PhP}_{2} \mathrm{ReNCl}_{2}\right), 512$ (100) (($\left.\left.\mathrm{Me}_{2} \mathrm{PhP}\right)_{2} \mathrm{ReNCl}\right), 408$ (50) (($\left.\left.\mathrm{Me}_{2} \mathrm{PhP}\right) \mathrm{ReNCl}_{2}\right)$.

3.4. $\left[\left(\mathrm{Me}_{2} \mathrm{PhP}_{3}\right)_{3} \mathrm{Cl}_{2} \mathrm{ReN}_{2} \mathrm{TiCl}_{4}\right.$

$\left[\mathrm{TiCl}_{4}(\mathrm{MeCN})\right]_{2}(0.1 \mathrm{~g}, 0.216 \mathrm{mmol})$ is dissolved in 25 ml toluene. Subsequently, $0.7 \mathrm{~g}(1.0 \mathrm{mmol})$ $\mathrm{ReNCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ are added slowly. Afterwards, the reaction mixture is stirred for 24 h . Under reduced pressure, the volume is reduced to about 50%. The concentrated solution is now covered with a layer of 25 $\mathrm{ml} n$-hexane. After 3 weeks brown crystals of $\mathbf{3} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$ are obtained in a yield of 60%.
Anal. Found: C, 34.7; H, 4.4; N, 1.3; Cl, 23.2 $\mathrm{C}_{48} \mathrm{H}_{66} \mathrm{Cl}_{8} \mathrm{~N}_{2} \mathrm{P}_{6} \mathrm{Re}_{2} \mathrm{Ti}$. Anal. Calc.: C, 36.9; H, 4.2; N, 1.8; Cl, 18.2\%.

IR (KBr): $\mathrm{cm}^{-1} 2917 \mathrm{~m}, 1435 \mathrm{~s}, 1413 \mathrm{w}, 1282 \mathrm{w}$, $1261 \mathrm{w}, 1104 \mathrm{~m}, 1018$ vs, $945 \mathrm{~s}, 916$ vs, $742 \mathrm{~s}, 695 \mathrm{~s}, 489$ $\mathrm{s}, \quad 370 \mathrm{~m} . \quad \mathrm{MS}\left(\mathrm{FAB}^{+}\right): m / z \quad(\%) 685$ (10) (($\left.\left.\mathrm{Me}_{2} \mathrm{PhP}\right)_{3} \mathrm{ReNCl}_{2}\right), 650$ (80) (($\left.\left.\mathrm{Me}_{2} \mathrm{PhP}\right)_{3} \mathrm{ReNCl}\right), 547$ (95) (($\left.\left.\mathrm{Me}_{2} \mathrm{PhP}\right)_{2} \mathrm{ReNCl}_{2}\right), 512$ (100) ($\left.\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{2} \mathrm{ReNCl}\right)$, 408 (30) ($\left.\mathrm{Me}_{2} \mathrm{PhP}\right) \mathrm{ReNCl}_{2}$).

3.5. Crystal structure determinations

The crystallographic data (Table 1) were collected by an Enraf-Nonius CAD4 diffractometer with monochromatized $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation. The unit cell parameters were determined from 25 carefully centered reflections. Intensity data were measured via ω-scans, and an empirical absorption correction, based on ψ-scans, was applied [17]. The structures were solved by direct methods (SHELXS-97 [18]) and refined by a full matrix least-squares procedure using F^{2} (SHELXL-97 [19]). All non-hydrogen atoms were refined with anisotropic displacement parameters. H atoms were calculated at idealized positions.

4. Supplementary material

Further details of the crystal structure investigations are available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK, on quoting the depository number and the full journal citation.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft for financial support, and the company H.C. Starck for donating the rhenium metal.

References

[1] J. Chatt, C.D. Falk, G.J. Leigh, R.J. Paske, J. Chem. Soc. A (1969) 2288.
[2] J. Chatt, J.D. Garford, N.P. Johnson, G.A. Rowe, Inorg. Synth. 17 (1977) 110.
[3] J. Chatt, B.T. Heaton, J. Chem. Soc. A (1971) 705.
[4] R. Dantona, E. Schweda, J. Strähle, Z. Naturforsch. 39b (1984) 733.
[5] G. Beuter, U. Englert, J. Strähle, Z. Naturforsch. 43b (1988) 145.
[6] S. Ritter, R. Hübener, U. Abram, J. Chem. Soc. Chem. Commun. (1995) 2047.
[7] B. Schmid, E. Schweda, J. Strähle, Z. Anorg. Allg. Chem. 624 (1998) 1111.
[8] A. Haug, J. Strähle, Z. Anorg. Allg. Chem. 624 (1998) 931.
[9] A. Haug, J. Strähle, Z. Anorg. Allg. Chem. 624 (1998) 1746.
[10] A.I. Kuz'min, S.I. Kuznetsov, Koord. Khim. 8 (1982) 159.
[11] S.I. Troyanov, G.N. Mazo, Vestnik Moskovskogo Univ. Khim. 39 (1984) 606.
[12] K. Dehnicke, J. Strähle, Angew. Chem. Int. Ed. Engl. 20 (1981) 413.
[13] K. Dehnicke, J. Strähle, Angew. Chem. Int. Ed. Engl. 31 (1992) 955.
[14] E. Forsellini, U. Casellato, R. Graziani, L. Magon, Acta Crystallogr. B38 (1982) 3081.
[15] L. Pauling, The Nature of the Chemical Bond, 3rd, Verlag Chemie, Weinheim, 1968.
[16] A. Hagenbach, J. Strähle, unpublished results.
[17] A.L. Spek, PLATON, Fortran program for the calculation of crystallographic data, University of Utrecht, The Netherlands, 1996.
[18] G.M. Sheldrick, SHELXS-97, Fortran program for the solution of crystal structures, University of Göttingen, Germany, 1997.
[19] G.M. Sheldrick, SHELXL-97, Fortran program for the refinement of crystal structures, University of Göttingen, Germany, 1997.
[20] E. Keller, SCHAKAL-92, Program for the graphical representation of crystal structures, University of Freiburg, Germany, 1992.

[^0]: * Corresponding author.

 E-mail address: joachim.straehle@uni-tuebingen.de (J. Strähle)

